Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Med Virol ; 96(3): e29517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476091

RESUMO

Herbal medicines (HMs) are one of the main sources for the development of lead antiviral compounds. However, due to the complex composition of HMs, the screening of active compounds within these is inefficient and requires a significant time investment. We report a novel and efficient virus-based screening method for antiviral active compounds in HMs. This method involves the centrifugal ultrafiltration of viruses, known as the virus-based affinity ultrafiltration method (VAUM). This method is suitable to identify virus specific active compounds from complex matrices such as HMs. The effectiveness of the VAUM was evaluated using influenza A virus (IAV) H1N1. Using this method, four compounds that bind to the surface protein of H1N1 were identified from dried fruits of Terminalia chebula (TC). Through competitive inhibition assays, the influenza surface protein, neuraminidase (NA), was identified as the target protein of these four TC-derived compounds. Three compounds were identified by high performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS), and their anti-H1N1 activities were verified by examining the cytopathic effect (CPE) and by performing a virus yield reduction assay. Further mechanistic studies demonstrated that these three compounds directly bind to NA and inhibit its activity. In summary, we describe here a VAUM that we designed, one that can be used to accurately screen antiviral active compounds in HMs and also help improve the efficiency of screening antiviral drugs found in natural products.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Plantas Medicinais , Humanos , Ultrafiltração , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Proteínas de Membrana
2.
Cell Insight ; 3(1): 100144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38323318

RESUMO

The global outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatened human health and public safety. The development of anti-SARS-CoV-2 therapies have been essential to curb the spread of SARS-CoV-2. Particularly, antivirals targeting viral entry have become an attractive target for the development of anti-SARS-CoV-2 therapies. In this review, we elucidate the mechanism of SARS-CoV-2 viral entry and summarize the development of antiviral inhibitors targeting viral entry. Moreover, we speculate upon future directions toward more potent inhibitors of SARS-CoV-2 entry. This study is expected to provide novel insights for the efficient discovery of promising candidate drugs against the entry of SARS-CoV-2, and contribute to the development of broad-spectrum anti-coronavirus drugs.

3.
Sci Adv ; 10(8): eadk9004, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394202

RESUMO

Seasonal or pandemic illness caused by influenza A viruses (IAVs) is a major public health concern due to the high morbidity and notable mortality. Although there are several approved drugs targeting different mechanisms, the emergence of drug resistance calls for new drug candidates that can be used alone or in combinations. Small-molecule IAV entry inhibitor, ING-1466, binds to hemagglutinin (HA) and blocks HA-mediated viral infection. Here, we show that this inhibitor demonstrates preventive and therapeutic effects in a mouse model of IAV with substantial improvement in the survival rate. When administered orally it elicits a therapeutic effect in mice, even after the well-established infection. Moreover, the combination of ING-1466 with oseltamivir phosphate or baloxavir marboxil enhances the therapeutic effect in a synergistic manner. Overall, ING-1466 has excellent oral bioavailability and in vitro absorption, distribution, metabolism, excretion, and toxicity profile, suggesting that it can be developed for monotherapy or combination therapy for the treatment of IAV infections.


Assuntos
Dibenzotiepinas , Vírus da Influenza A , Morfolinas , Piridonas , Tiepinas , Triazinas , Animais , Camundongos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/uso terapêutico , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas , Tiepinas/farmacologia , Tiepinas/uso terapêutico
4.
J Ethnopharmacol ; 323: 117701, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38185258

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingjin Huatan Decoction (QJHTT) consists of 11 herbal medicines: Scutellaria baicalensis Georgi, Gardenia jasminoides J. Ellis, Platycodon grandiflorus (Jacq.) A. DC., Ophiopogon japonicus (Thunb.) Ker Gawl., Morus alba L., Fritillaria thunbergii Miq., Anemarrhena asphodeloides Bunge, Trichosanthes kirilowii Maxim., Citrus reticulata Blanco, Poria cocos (Schw.) Wolf, and Glycyrrhiza uralensis Fisch. As a traditional Chinese medicinal formula, QJHTT has been used for more than 400 years in China. It has shown promising results in treating influenza A virus (IAV) pneumonia. AIM OF THE STUDY: To elusive the specific pharmacological constituents and mechanisms underlying its anti-IAV pneumonia effects. MATERIALS AND METHODS: The components in QJHTT were analyzed through the use of a serum pharmacology-based ultra high-performance liquid chromatography Q- Exactive Orbitrap mass spectrometry (UHPLC-Q Exactive Orbitrap-MS) method. Simultaneously, the dynamic changes in IAV-infected mouse lung viral load, lung index, and expression of lung inflammation factors were monitored by qRT-PCR. RESULTS: We successfully identified 152 chemical components within QJHTT, along with 59 absorbed chemical prototype constituents found in the serum of mice treated with QJHTT. 43.45% of these chemical components and 43.10% of the prototype constituents were derived from the monarch drugs, namely Huangqin and Zhizi, aligning perfectly with traditional Chinese medicine theory. Notably, our analysis led to the discovery of 14 compounds within QJHTT for the first time, three of which were absorbed into the bloodstream. Simultaneously, we observed that QJHTT not only reduced the viral load but also modulated the expression of inflammation factors in the lung tissue including TNF-α, IL-1ß, IL-4, IL-6, IFN-γ, and IL17A. A time-effect analysis further revealed that QJHTT intervention effectively suppressed the peak of inflammatory responses, demonstrating a robust anti-IAV pneumonia effect. CONCLUSIONS: We comprehensively analyzed the pharmacological material basis of QJHTT by a highly sensitive and high-resolution UHPLC-Q Exactive Orbitrap-MS method, and demonstrated its efficacy in combating IAV pneumonia by reducing lung viral load and inflammatory factors. This study has significant importance for elucidating the pharmacological basis and pharmacological mechanism of QJHTT in combating IAV pneumonia.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Pneumonia Viral , Camundongos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Pulmão , Pneumonia Viral/tratamento farmacológico , Plantas Medicinais/química , Anticorpos , Cromatografia Líquida de Alta Pressão/métodos
5.
J Med Virol ; 96(1): e29369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180269

RESUMO

Broad-spectrum antivirals (BSAs) have the advantageous property of being effective against a wide range of viruses with a single drug, offering a promising therapeutic solution for the largely unmet need in treating both existing and emerging viral infections. In this review, we summarize the current strategies for the development of novel BSAs, focusing on either targeting the commonalities during the replication of multiple viruses or the systemic immunity of humans. In comparison to BSAs that target viral replication, these immuno-modulatory agents possess an expanded spectrum of antiviral activity. However, antiviral immunity is a double-edged sword, and maintaining immune homeostasis ultimately dictates the health status of hosts during viral infections. Therefore, establishing an ideal goal for immuno-modulation in antiviral interventions is crucial. Herein we propose a bionic approach for immuno-modulation inspired by mimicking bats, which possess a more robust immune system for combating viral invasions, compared to humans. In addition, we discuss an empirical approach to treat diverse viral infections using traditional Chinese medicines (TCMs), mainly through bidirectional immuno-modulation to restore the disrupted homeostasis. Advancing our understanding of both the immune system of bats and the mechanisms underlying antiviral TCMs will significantly contribute to the future development of novel BSAs.


Assuntos
Antivirais , Viroses , Animais , Humanos , Antivirais/farmacologia , Quirópteros/imunologia , Quirópteros/virologia , Homeostase , Medicina Tradicional Chinesa , Viroses/tratamento farmacológico , Desenvolvimento de Medicamentos
6.
ACS Pharmacol Transl Sci ; 6(12): 1841-1850, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093833

RESUMO

Influenza A viruses (IAVs) have gradually developed resistance to FDA-approved drugs, which increases the need to discover novel antivirals with new mechanisms of action. Here, we used a phenotypic screening strategy and discovered that the imidazo[1,2-a]pyrazine derivative A4 demonstrates potent and broad-spectrum anti-influenza activity, especially for the oseltamivir-resistant H1N1/pdm09 strain. Indirect immunofluorescence assays revealed that A4 induces clustering of the viral nucleoprotein (NP) and prevents its nuclear accumulation. Furthermore, upon conducting binding analyses between A4 and the influenza NP using surface plasmon resonance assays and molecular docking simulations, we were able to confirm that A4 binds directly to the viral NP. Additionally, A4 exhibits high human plasma metabolic stability (remaining120 min > 90%, T1/2 = 990 min) and moderate inhibitory effects on CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 as well as low acute toxicity in Kunming mice. Overall, this study provides valuable insights and lays the groundwork for future efforts in medicinal chemistry to identify effective drugs against influenza.

7.
J Med Virol ; 95(11): e29181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37930075

RESUMO

Influenza virus infection is currently one of the most prevalent and transmissible diseases in the world causing local outbreaks every year. It has the potential to cause devastating global pandemics as well. The development of anti-influenza drugs possessing novel mechanisms of action is urgently needed to control the spread of influenza infections; thus, drugs that inhibit influenza virus entry into target cells are emerging as a hot research topic. In addition to discussing the biological significance of hemagglutinin in viral replication, this article provides recent updates on the natural products, small molecules, proteins, peptides, and neutralizing antibody-like proteins that have anti-influenza potency.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Influenza Humana/tratamento farmacológico , Internalização do Vírus , Antivirais/uso terapêutico , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo
8.
Virol Sin ; 38(6): 931-939, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741571

RESUMO

Influenza A virus (IAV) poses a global public health concern and remains an imminent threat to human health. Emerging antiviral resistance to the currently approved influenza drugs emphasizes the urgent need for new therapeutic entities against IAV. Allopregnanolone (ALLO) is a natural product that has been approved as an antidepressant drug. In the present study, we repurposed ALLO as a novel inhibitor against IAVs. Mechanistic studies demonstrated that ALLO inhibited virus replication by interfering with the nucleus translocation of viral nucleoprotein (NP). In addition, ALLO showed significant synergistic activity with compound 16, a hemagglutinin inhibitor of IAVs. In summary, we have identified ALLO as a novel influenza virus inhibitor targeting NP, providing a promising candidate that deserves further investigation as a useful anti-influenza strategy in the future.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Cães , Humanos , Nucleoproteínas , Pregnanolona , Células Madin Darby de Rim Canino , Replicação Viral
9.
J Med Virol ; 95(8): e29059, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635463

RESUMO

Respiratory syncytial virus (RSV) causes lower respiratory tract diseases and bronchiolitis in children and elderly individuals. There are no effective drugs currently available to treat RSV infection. In this study, we report that Licochalcone A (LCA) can inhibit RSV replication and mitigate RSV-induced cell damage in vitro, and that LCA exerts a protective effect by reducing the viral titer and inflammation in the lungs of infected mice in vivo. We suggest that the mechanism of action occurs through pathways of antioxidant stress and inflammation. Further mechanistic results demonstrate that LCA can induce nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus, activate heme oxygenase 1 (HO-1), and inhibit reactive oxygen species-induced oxidative stress. LCA also works to reverse the decrease in I-kappa-B-alpha (IкBα) levels caused by RSV, which in turn inhibits inflammation through the associated nuclear factor kappa B and tumor necrosis factor-α signaling pathways. The combined action of the two cross-talking pathways protects hosts from RSV-induced damage. To conclude, our study is the first of its kind to establish evidence of LCA as a viable treatment for RSV infection.


Assuntos
Chalconas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Chalconas/farmacologia , Chalconas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inflamação
10.
J Med Virol ; 95(7): e28968, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489704

RESUMO

Influenza viruses pose a significant threat to human health worldwide due to seasonal epidemics and occasional global pandemics. These viruses can cause severe upper respiratory tract infections that contribute to high morbidity and mortality rates. The emergence of drug-resistant influenza viruses has created the need for the development of novel broad-spectrum antivirals. Here, we present a novel anti-influenza agent with new targets and mechanisms of action to address this problem. Our findings led to the discovery of a novel influenza virus inhibitor, a ligustrazine derivative known as A9. We have found that it exhibits broad-spectrum antiviral properties against influenza A and B viruses (IAV and IBV, respectively), including oseltamivir-resistant strain. Through multiple bioassays such as time-of-addition assay, indirect immunofluorescence assay, and nuclear-cytoplasmic fractionation assay, we demonstrated that A9 inhibits the nuclear export of the viral ribonucleoprotein (vRNP). Furthermore, escape mutant analyses and affinity studies determined by surface plasmon resonance indicated that A9 specifically targets the nucleoprotein. In addition, four chalcone derivatives developed from A9 (B14, B29, B31, and B32), were found to effectively inhibit the replication of influenza virus through the same mechanism of action. In this manuscript we highlight A9 and its four derivatives as potential leads for the treatment of IAV and IBV infections, and their unique and novel mechanism of action probable benefit the field of anti-influenza drug discovery.


Assuntos
Chalcona , Chalconas , Influenza Humana , Orthomyxoviridae , Humanos , Nucleoproteínas , Transporte Ativo do Núcleo Celular , Antivirais
12.
J Med Virol ; 95(3): e28609, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840402

RESUMO

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a major public health threat worldwide and emphasizes an urgent need for effective therapeutics. Recently, Ordonez et al. identified sulforaphane (SFN) as a novel coronavirus inhibitor both in vitro and in mice, but the mechanism of action remains elusive. In this study, we independently discovered SFN for its inhibitory effect against SARS-CoV-2 using a target-based screening approach, identifying the viral 3-chymotrypsin-like protease (3CLpro ) as a target of SFN. Mechanistically, SFN inhibits 3CLpro in a reversible, mixed-type manner. Moreover, enzymatic kinetics studies reveal that SFN is a slow-binding inhibitor, following a two-step interaction. Initially, an encounter complex forms by specific binding of SFN to the active pocket of 3CLpro ; subsequently, the isothiocyanate group of SFN as "warhead" reacts covalently to the catalytic cysteine in a slower velocity, stabilizing the SFN-3CLpro complex. Our study has identified a new lead of the covalent 3CLpro inhibitors which has potential to be developed as a therapeutic agent to treat SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Quimases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Isotiocianatos/farmacologia , Antivirais/uso terapêutico
13.
Virol Sin ; 38(1): 1-8, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309307

RESUMO

Influenza A virus (IAV) genome comprises eight negative-sense RNA segments, of which the replication is well orchestrated and the delicate balance of multiple segments are dynamically regulated throughout IAV life cycle. However, previous studies seldom discuss these balances except for functional hemagglutinin-neuraminidase balance that is pivotal for both virus entry and release. Therefore, we attempt to revisit IAV life cycle by highlighting the critical role of "genome balance". Moreover, we raise a "balance regression" model of IAV evolution that the virus evolves to rebalance its genome after reassortment or interspecies transmission, and direct a "balance compensation" strategy to rectify the "genome imbalance" as a result of artificial modifications during creation of recombinant IAVs. This review not only improves our understanding of IAV life cycle, but also facilitates both basic and applied research of IAV in future.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Proteínas Virais/genética , Replicação Viral
14.
J Med Virol ; 95(1): e28345, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424458

RESUMO

The balance of the segmented genome derived from naturally occurring influenza A viruses (IAVs) is delicate and vulnerable to foreign insertions, thus most reporter IAVs up to date are generated using the backbone of the laboratory-adapted strains. In this study, we constructed a reporter influenza A/H3N2 virus (A/NY-HiBiT) which was derived from a clinical isolate, by placing a minimized HiBiT tag to the N-terminus of the viral nuclear-export protein (NEP). Here, we show that this 11-amino acid HiBiT tag did not adversely impact the viral genome balance, and the recombinant A/NY-HiBiT virus maintains its relative stability. Moreover, the replication profile of the HiBiT-tagged virus can be measured by a simple Nano-Glo assay, providing a robust high-throughput screening (THS) platform. We used this platform to evaluate a collection of the pre-purified fractions which were derived from rare Chinese medicinal materials, and we identified three fractions, including wild Trametes robiniophila (50% methanol fraction), Ganoderma (water fraction), and wild Phellinus igniarius (ethyl acetate fraction), as potent anti-IAV actives. Our results demonstrate that this IAV reporter can be used as a powerful HTS platform for antiviral development.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Trametes/metabolismo , Influenza Humana/genética , Proteínas Virais/genética , Replicação Viral
15.
PLoS Pathog ; 18(8): e1010756, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926068

RESUMO

Reporter viruses provide powerful tools for both basic and applied virology studies, however, the creation and exploitation of reporter influenza A viruses (IAVs) have been hindered by the limited tolerance of the segmented genome to exogenous modifications. Interestingly, our previous study has demonstrated the underlying mechanism that foreign insertions reduce the replication/transcription capacity of the modified segment, impairing the delicate balance among the multiple segments during IAV infection. In the present study, we developed a "balance compensation" strategy by incorporating additional compensatory mutations during initial construction of recombinant IAVs to expand the tolerance of IAV genome. As a proof of concept, promoter-enhancing mutations were introduced within the modified segment to rectify the segments imbalance of a reporter influenza PR8-NS-Gluc virus, while directed optimization of the recombinant IAV was successfully achieved. Further, we generated recombinant IAVs expressing a much larger firefly luciferase (Fluc) by coupling with a much stronger compensatory enhancement, and established robust Fluc-based live-imaging mouse models of IAV infection. Our strategy feasibly expands the tolerance for foreign gene insertions in the segmented IAV genome, which opens up better opportunities to develop more versatile reporter IAVs as well as live attenuated influenza virus-based vaccines for other important human pathogens.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Camundongos , Replicação Viral/genética
16.
Anticancer Agents Med Chem ; 22(20): 3466-3486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652399

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Rhizoma paridis saponins (RPS), the main bioactive ingredients of Paris polyphylla Smith var. yunnanensis (PPY), have been proved to have remarkable effects on NSCLC cell lines. However, the multi-component synergistic effects and mechanisms of RPS on NSCLC have not been elucidated. OBJECTIVE: To decipher the multi-RPS synergistic effects and mechanisms against NSCLC based on network pharmacology combined with segmented solid-phase extraction (SPE) and bioactivity screening method. METHODS: Firstly, segmented SPE and cytotoxicity assays were performed to screen the RPS-enrichment fraction of PPY, and the steroidal saponins in it were identified by LC-MS/MS. Then, a network pharmacology analysis was performed to predict the potential therapeutic targets of RPS on NSCLC. Finally, viable cell counting tests and RT-qPCR were utilized to verify the synergistic effects and mechanisms of RPS. RESULTS: 48 potentially active compounds were identified from the 30% MeOH/EtOAc fraction of PPY (30% M/E PPY). The results of the network pharmacology analysis indicated that RPS exerted joint effects by regulating six key targets in the PI3K-AKT signaling pathway. In vitro experiments showed that due to the synergistic effects, 30% M/E PPY at 13.90 µg/mL could exert a stronger inhibitory activity on A549 cells by reducing the overexpression of six hub genes compared with the parallel control groups. CONCLUSION: This research elaborates on the multi-RPS synergy mechanisms against NSCLC and provides a way to develop new combination medicines for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Saponinas , Humanos , Saponinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Cromatografia Líquida , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pulmonares/tratamento farmacológico , Detecção Precoce de Câncer , Espectrometria de Massas em Tandem , Rizoma , Extração em Fase Sólida
17.
Adv Exp Med Biol ; 1366: 155-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412140

RESUMO

Ebola virus (EBOV) is one of the most deadliest agents already known, causing periodic epidemic of a severe hemorrhagic fever disease in Africa. Although two monoclonal antibody (mAb) drugs have recently received approval in the USA, additional therapeutics are still needed to combat potential outbreaks of resistance variants and other closely related ebola viruses. In this chapter, we describe the current understanding of the EBOV entry process and summarize the approaches, strategies, and advances in discovery and development of EBOV entry inhibitors, including therapeutic antibodies, peptides, small molecules, natural products, and other chemical structures.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Monoclonais/uso terapêutico , Surtos de Doenças , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Internalização do Vírus
18.
J Med Chem ; 64(24): 17992-18009, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34735766

RESUMO

Our previous efforts have proved that modifications targeting the 150-cavity of influenza neuraminidase can achieve more potent and more selective inhibitors. In this work, four subseries of C5-NH2 modified oseltamivir derivatives were designed and synthesized to explore every region inside the 150-cavity. Among them, compound 23d was exceptionally potent against the whole panel of Group-1 NAs with IC50 values ranging from 0.26 to 0.73 nM, being 15-53 times better than oseltamivir carboxylate (OSC) and 7-11 times better than zanamivir. In cellular assays, 23d showed more potent or equipotent antiviral activities against corresponding virus strains compared to OSC with no cytotoxicity. Furthermore, 23d exhibited high metabolic stability in human liver microsomes (HLM) and low inhibitory effect on main cytochrome P450 enzymes. Notably, 23d displayed favorable druggability in vivo and potent antiviral efficacy in the embryonated egg model and mice model. Overall, 23d appears to be a promising candidate for the treatment of influenza virus infection.


Assuntos
Antivirais/farmacologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Animais , Antivirais/química , Antivirais/farmacocinética , Disponibilidade Biológica , Embrião de Galinha , Simulação por Computador , Meia-Vida , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oseltamivir/química , Oseltamivir/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
19.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207368

RESUMO

Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.

20.
Acta Pharm Sin B ; 11(12): 3879-3888, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34002130

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic coronavirus disease 2019 (COVID-19), which threatens human health and public safety. In the urgent campaign to develop anti-SARS-CoV-2 therapies, the initial entry step is one of the most appealing targets. In this review, we summarize the current understanding of SARS-CoV-2 cell entry, and the development of targeted antiviral strategies. Moreover, we speculate upon future directions toward next-generation of SARS-CoV-2 entry inhibitors during the upcoming post-pandemic era.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...